Thermodynamics and Statistical Physics

Part I – Thermodynamics

Intermediate Exam 2

Thursday, October 11 2018, 15:00-17:00, Aletta Jacobshal 01

The total number of points that can be reached in this exam is 90.

Final grade = (points/10) + 1.

This exam has TWO pages, please also look at the other side!

- 1) The pressure in in the thermosphere outside the international space station (about 340 km above sea level) is about 10^{-5} Pa and the temperature is about 1100 °C. Estimate the mean free path of an N₂ molecule (M_{N2}=28 g/mol, d=0.37 nm) under these conditions (7 pt). At which pressure would the mean free path be as long as the ISS orbit (the radius of the earth is 6371 km) (3 pt)?
- 2) Express the first law of thermodynamics as an equation and with words. (5 pt)
- 3) Explain the concept of thermodynamic "reversibility" for the case of an expanding ideal gas.(10 pt)
- 4) a) The number of ideal gas particles hitting a unit area in unit time, having speeds between v and dv and traveling at angles between θ and $d\theta$ with respect to the normal of the hit area is given by:

$$v\cos\theta n f(v) dv \frac{1}{2}\sin\theta d\theta$$

Use this information together with the definition of the heat flux in z-direction

$$J_z = -\kappa \left(\frac{\partial T}{\partial z}\right)$$

to show that

$$\kappa = \frac{1}{3} C_V \lambda \langle v \rangle$$
 (6 pt).

b) In a 1.3 m² double glazed window, the panes of glass are separated by 1 cm and the volume in between is filled with Ar (M_{Ar} =40 g/mol, $\kappa = 0.016 \text{ JK}^{-1}\text{m}^{-1}\text{s}^{-1}$). How much energy is lost per second through the glass when the temperature inside is 23 °C whereas outside it is -5 °C? Is Ar a better heat conductor than N₂? (9 pt)

5) The thermal diffusion equation for a sphere can be written as

$$\frac{\partial T}{\partial t} = D \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right)$$

if there is no dependence on the angular coordinates and r is the radial coordinate. Give a general solution for the steady state case (5 pt). Give the solution for the boundary condition of a spherical animal of radius r_0 , with body temperature T_{body} for $r = r_0$ and a temperature of the outside medium $T_{outside}$ for $r \to \infty$. The thermal conductivity of the medium is κ (5 pt). How much heat does the animal loose to the medium per second (5 pt)?

- 6) What is the heat capacity at constant volume C_V (per particle) of a (monoatomic) ideal gas such as H? Why can C_V be different for an ideal gas of diatomic molecules such as H₂? Why is $C_V < C_p$ for an ideal gas? (15 pt)
- 7) The internal energy of a system is
 - a) the sum of the translational kinetic energy of all particles in the system.
 - b) the sum of the energy of all the internal degrees of freedom that the system possesses.
 - c) a quantity that can only be changed by heat flow into the system of out of the system (10 pt).
- 8) Which one of the following quantities is NOT a state function?
 - a) pressure
 - b) expansion work
 - c) temperature
 - d) volume (10 pt).

Physical constants:

Avogadro's number:	$N_0 = 6.02 \text{ x } 10^{23} \text{ mol}^{-1}$
Planck's constant:	$h = 6.626 \text{ x } 10^{-34} \text{ Js}$
	$\hbar = \frac{h}{2\pi} = 1.055 \text{ x } 10^{-34} \text{ Js}$
Boltzmann's constant:	$k = 1.381 \text{ x } 10^{-23} \text{ J K}^{-1}$
Gas constant:	$R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$
Speed of light:	$c = 3 \ge 10^8 \text{ m s}^{-1}$
Electron rest mass:	$m_e = 9.11 \ge 10^{-31} \text{ kg}$
Proton rest mass:	$m_p = 1.67 \ge 10^{-27} \text{ kg}$
Charge of the electron:	$e = 1.60 \ge 10^{-19} \text{ C}$
Bohr magneton:	$\mu_B = \frac{e\hbar}{2m_e} = 9.27 \text{ x } 10^{-24} \text{ A m}^2$
Permeability of vacuum:	$\mu_0 = 4\pi \ge 10^{-7} \ \text{N A}^{-2}$
Molar volume at STP:	22.4 litre